

OS2sync

API Documentation

Version: 3.0.0

Date: 18.07.2022

Author: BSG

Digital Identity ApS www.digital-identity.dk 2 / 19

Content
1 Introduction3

2 API overview4

2.1 Service API4

2.2 SDK API4

2.2.1 Security5

2.2.2 Cvr5

2.3 SQL API5

2.4 Registration objects5

2.4.1 UserRegistration6

2.4.2 OrgUnitRegistration7

2.5 The operations11

2.6 Error handling11

2.6.1 Information about KOMBIT status codes12

3 Prerequisites and configuration14

3.1 SQL and Service API14

3.2 SDK API14

4 API Usage15

4.1 Service API15

4.1.1 Maintaining users15

4.1.2 Maintaining organizational units16

4.2 SDK API17

4.2.1 Initialization17

4.2.2 Maintaining users17

4.2.3 Maintaining organizational units18

4.3 SQL API19

5 Success / Error tables19

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 3 / 19

1 Introduction
The purpose of this document is it describe the API offered by the OS2sync solution in

technical details, so the reader is fully equipped to use the OS2sync APIs.

This document consists of 4 chapters (besides this), which contains the following information

Chapter 2. This chapter gives a logical overview of the API, and describes all the input fields.

Once development has started, this is the reference chapter to lookup when in doubt about

data and behavior.

Chapter 3. This chapter describes the steps necessary to setup the development environment.

Chapter 4. This chapter describes how to use the 3 different physical APIs, showing example

code on the various operations.

Chapter 5. This chapter describes the two tools that can be used during development to test

that data is synchronized correctly.

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 4 / 19

2 API overview
The API is a logical API, with three physical implementations (called Service, SQL and SDK).

The document focuses on the logical API, but covers the concrete physical implementations

where relevant, for instance if a given physical implementation deviates from the other.

2.1 Service API

The Service API is deployed as a REST/JSON web service, with the following endpoints

(<server> is the FQDN of the server where the service is deployed)

http://<server>:5000/api/user

http://<server>:5000/api/orgUnit

These are for managing individual objects.

The HTTP methods POST and DELETE are used for synchronizing objects of the corresponding

types. E.g. to create a user, perform a HTTP POST with UserRegistration object in the body to

http://<server>:5000/api/user

And to delete a user with uuid 315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95, perform a HTTP

DELETE with an empty object to

http://<server>:5000/api/user/315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95

Finally, it is possible to read data using the GET operation like this

http://<server>:5000/api/user/315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95

The format of the returned object in the GET operation is identical to the format used for

calling POST.

2.2 SDK API

The SDK API is a .NET interface, written in C# (but accessible from any language on the .NET

platform). The API has similar endpoints to the Service API, but they are implemented as

service classes, and can be used like this

// the service for performing user operations

UserService userService = new UserService();

// create/update a user object

userService.Update(registration);

// delete a user object

userService.Delete("315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95");

As with the Service API, it is possible to use the SDK for reading objects using this operation

// read details on a user

var user = userService.Read("315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95");

The class instance returned by Read() is of the same class used for calling Update().

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 5 / 19

2.2.1 Security

It is possible to configure the REST API to require an ApiKey. If that is configured on the

installation, a HTTP header called ApiKey must be supplied, containing the configured value.

2.2.2 Cvr

A Cvr number is required when using the API. This can either be configured globally in the

installation, or it can be supplied as a HTTP header (The header is called “Cvr”).

If no header is supplied, the configured value is used. It is possible to supply a different value

than the configured value, for instance when deployed for multi-tenancy purposes.

2.3 SQL API

The SQL API is a set of tables, in which “requests” can be written. Unlike the SDK and Service

API’s, there is no immediate feedback, but as long as the request conforms to the table

constraints, it is considered a valid request, and will be handled by the OS2sync component at

some point.

A sample insert for creating or updating a user would be something like this

INSERT INTO queue_users (

 user_uuid,

 ... attributes ...,

 operation) VALUES (

 '315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95',

 ... attribute values ...,

 'UPDATE'

);

While a delete is simply this

INSERT INTO queue_users (

 user_uuid,

 operation) VALUES (

 '315a4cdc-f77c-4037-ac3e-b2ecaa7f2f95',

 'DELETE'

);

Note that it is not possible to read data from Organisation using the SQL API

2.4 Registration objects

There are 2 different registration objects, one for each of the API endpoints. Note that the

registration objects are only used for update/create operations, for delete and read operations

only the UUID of the object is required, and the list operation takes no arguments.

The attributes in the registration objects are identical in the three physical APIs, though the

SQL tables are partially denormalized, where the Service/SDK API’s has a more normalized

structure.

The SDK version of the registration object is shown below, and the fields (which are identical in

the three APIs) are described in details

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 6 / 19

2.4.1 UserRegistration

The registration of a user contains the following attributes

 public class UserRegistration

 {

 // attributes for User object

 public string Uuid;

 public string ShortKey;

 public string UserId;

 // address information for the user

 public string PhoneNumber;

 public string Landline;

 public string Email;

 public string RacfID;

 public string Location;

 public string FMKID;

 // relevant information about the Users positions in the municipality

 public List<Position> Positions;

 // attributes for Person object

 public Person Person;

 // registration timestamp

 public DateTime Timestamp;

 }

 // Position structure

 public class Position

 {

 public string Name;

 public string OrgUnitUuid;

 public string StartDate; // yyyy-MM-dd (or null)

 public string StopDate; // yyyy-MM-dd (or null)

 }

 // Person structure

 public class Person

 {

 public string Name;

 public string Cpr;

 }

The attributes must conform to the following rules

Attribute Mandatory Description

Uuid Yes This must be a UUID v4 value, and is used to

uniquely identify the object.

This value cannot be modified later on.

ShortKey No This value is a unique, but short (max 50

characters) identifier.

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 7 / 19

If not supplied in the registration, OS2sync will

generate one, as Organisation requires this field to

be filled out.

UserId Yes This is the userId of the user (e.g. the

SAMAccountName from Active Directory).

PhoneNumber No The phone number of the user.

Landline No The landline number of the user.

Email No The email address of the user.

Location No The physical location of the user (e.g. office

number)

RacfID No The userId of the user in CICS (for legacy KMD

support)

FMKID No The FMKID address of the user.

Position Yes The list of positions that the user holds within the

municipality.

The Name attribute must be filled out, and

contains the ‘title’ of the position. There is no

functionality tied to the value of this field, and it is

used for presentation purposes only.

The OrgUnitUuid attribute must be filled out, and

contains the UUID of the OrgUnit that this position

relates to.

The StartDate and StopDates are optional, and can

be used to control the “Virkning” of the given

position. If left out, default is StartDate is set to

TODAY and StopDate is set to INFINITY.

A User must have at least 1 position.

Person Yes The person object contains the name and

potentially the cpr number of the user.

The name must be filled out, but the cpr number

can be left empty.

Timestamp No This is the timestamp of the registration. It is

recommended to leave it empty, as it will then

default to today.

It is not currently possible to register data into the

future, as these will be rejected by Organisation.

This might be possible in later releases of

Organisation.

2.4.2 OrgUnitRegistration

The registration of an OrgUnit contains the following attributes

 public class OrgUnitRegistration

 {

 public string Uuid;

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 8 / 19

 public string ShortKey;

 public string Name;

 public string ParentOrgUnitUuid;

 public string PayoutUnitUuid;

 public string ManagerUuid;

 public DateTime Timestamp;

 public string PhoneNumber;

 public string Email;

 public string Location;

 public string LOSShortName;

 public string LOSId;

 public string DtrId;

 public string ContactOpenHours;

 public string EmailRemarks;

 public string Contact;

 public string PostReturn;

 public string PhoneOpenHours;

 public string Ean;

 public string Url;

 public string Landline;

 public string Post;

 public string FOA;

 public string PNR;

 public string SOR;

 public OrgUnitType Type;

 public List<string> Tasks;

 public List<string> ItSystems;

 public List<string> ContactForTasks;

 }

 public enum OrgUnitType { DEPARTMENT, TEAM }

The attributes must conform to the following rules

Attribute Mandatory Description

Uuid Yes This must be a UUID v4 value, and is used to

uniquely identify the OrgUnit.

This value cannot be modified later on.

ShortKey No This value is a unique, but short (max 50

characters) identifier for the OrgUnit.

If not supplied in the registration, OS2sync will

generate one, as Organisation requires this field to

be filled out.

Name Yes This is the name of the OrgUnit. The value is used

for presentation purposes.

ParentOrgUnitUuid No* This is the UUID of the OrgUnit that is the parent

of this OrgUnit.

While it is allowed (technically) to not have a

parent, it is required by KOMBIT that only the top-

level OrgUnit is parent-less, to ensure that the set

of registered OrgUnits are in fact a hierarchy.

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 9 / 19

STSOrgSync does not in any way validate, that the

set of OrgUnits that are registered, follow this rule.

PayoutUnitUuid No This is a UUID that references an OrgUnit that is a

PayoutUnit (udbetalingsenhed).

When implementing the it-systems KY and KSD,

they require that the municipalities PayoutUnits

(Udbetalingsenheder) are known (see the

LOSAddress attribte), and that any team that

performs payouts on behalf of these units, have a

reference to these units.

If the OrgUnit being registered, is a team that

performs payouts, then this field must be filled

out, and reference the OrgUnit that corresponds to

that specific PayoutUnit.

This registration pattern will be described in details

as part of the KY and KSD implementations, and

these values can be left out until then.

ManagerUuid No UUID that references the User object that is the

manager for this OrgUnit.

Timestamp No This is the timestamp of the registration. It is

recommended to leave it empty, as it will then

default to today.

It is not currently possible to register data into the

future, as these will be rejected by Organisation.

This might be possible in later releases of

Organisation.

PhoneNumber No The phone number of the OrgUnit.

Email No The email address of the OrgUnit.

Location No The physical location of the OrgUnit (e.g. office

space).

LOSShortName No If this OrgUnit is a PayoutUnit (Udbetalingsenhed),

it must have a reference to the corresponding unit

in LOS. The value to give here is the

KaldenavnKort value from LOS.

Please note that as a side-effect of registering this

information on the OrgUnit, it will be created as a

PayoutUnit, so do not put this value on ordinary

OrgUnits.

LOSId No This is the ID of the OrgUnit if it comes from LOS.

This is used to support certain legacy KMD

systems.

ContactOpenHours No For contact purposes, it is possible to register at

which days and which hours of the day, that this

OrgUnit is open for business.

KOMBIT will at some point document the exact

format that this value must be written in, so for

now leave this field empty.

DtrId No The DTR code for this OrgUnit, used in “dagtilbud”

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 10 / 19

(e.g., AULA Dagtilbud)

EmailRemarks No Some textual message about email contacts. E.g.

“It can take up to 2 days before you get a

response”

Contact No The contact address for this OrgUnit, in case it

differs from the actual post address of the OrgUnit.

PostReturn No The return address for physical mail that is

returned to the OrgUnit.

PhoneOpenHours No For contact purposes, it is possible to register at

which days and which hours of the day, that this

OrgUnit is open for (phone) business.

Ean No The EAN number of this OrgUnit (if it has one).

Url No This is the website-address of this OrgUnit.

Landline No This is the landline phone number of this OrgUnit.

Post No This is the post-address of this OrgUnit.

FOA No This is the FOA-address of this OrgUnit.

PNR No This is the PNR-address of this OrgUnit.

SOR No This is the SOR-address of this OrgUnit.

Type Yes Must be filled out with one of the values in the

enumeration: DEPARTMENT or TEAM.

DEPARTMENT is the “normal” value, whereas TEAM

is currently only used in DUBU.

Tasks No A list of UUIDs referencing the KLE objects in STS

Klassifikation.

Used for describing which tasks are solved in this

OrgUnit.

ItSystems No A list of UUIDs referencing the ItSystem objects in

STS Organisation.

Used for describing which ItSystems are used

within this OrgUnit.

ContactForTasks No A list of UUIDs referencing the KLE objects in STS

Organisation.

Used for describing which tasks this OrgUnit is the

contactplace (Henvendelssted) for.

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 11 / 19

2.5 The operations

On each of the mentioned objects, four operations can be performed

▪ Update. This operation will either create or update an object of the given type, with the

data supplied in the call to the operation

▪ Delete. This operation will (for users and organizational units) perform a “soft-delete”

on the object, which will cause the object to change its state to inactive. The object will

still exist, but will have the state ‘inactive’ when read from Organisation. A deleted

object is undeleted if an Update operation is called on it.

▪ Read. This operation reads a single object, using the UUID of the object as the key for

reading the object. It will return a structure identical to the one used for calling

Update().

2.6 Error handling

Error handling depends on the chosen API, but toughly the errors falls into two categories

▪ Temporary errors (e.g. the Organisation service is down), which should be handled by

trying again

▪ Permanent errors (e.g. invalid input data), which should be handled by fixing the data

or the implementation before trying again

SDK API error handling

In case of a temporary error, the API will throw an exception of the following type

Organisation.BusinessLayer.TemporaryFailureException

The exception will contain both an inner exception, as well as an unstructured textual

message, indicating the cause of the temporary error. The caller should wait for a period of

time, and then try again (pause all calls to the OS2sync API for maybe 5 minutes, then try

again)

It is highly recommended to monitor TemporaryFailureExceptions, and if they occur often,

check the logs and see what is wrong. Likely it is the Organisation service that is unavailable,

but it could also be an expired certificate, an expired service agreement or something similar

which requires human action.

Any other exception type is considered a permanent error, and attempting to call again with

the same input will result in the same error.

SQL API error handling

The SQL API rely on input validation (though schema constraints) to ensure that data is well-

structured before the data is accepted. The SchedulingLayer will automatically deal with

temporary errors, and attempt retries at regular intervals.

As some temporary errors cannot resolve themselves automatically (e.g. an expired

certificate), it is important to monitor the logs (or use the monitoring service) for OS2sync, so

these errors can be resolved.

Permanent errors are logged as such in the log file.

Service API error handling

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 12 / 19

The Service API uses an input validation approach similar to the SQL API, and will return HTTP

400 on invalid input. If the input is valid, it will return HTTP 200, and place the request on the

queue. The service might return HTTP 500 if it is badly configured, or if some technical issue

prevents it from processing the request (look in the log file for details).

As the request processing is dealt with by the SchedulingLayer, the same recommendations for

monitoring the log file (or using the monitoring service) goes here.

2.6.1 Information about KOMBIT status codes

The API validates all input data, with the intend of catching as many errors in data as possible,

but it does not catch all errors, and sometimes it might be helpful to inspect the status codes

that KOMBIT returns to OS2sync (the error codes are logged to the logfile, as well as

embedded in the error message when using the SDK API).

Note that the status codes are not passed through the API in any structured way, and it is not

recommended that the software using the API should attempt processing of these codes –

instead use the error handling outlined in the previous chapter.

The Organisation services returns a status code 20 on a successful operation, but if it returns a

non-20 status code, and it is not a status code that STSOrgSync knows how to deal with, an

error is thrown, which should be dealt with by the user of the API.

The list of possible status codes is shown below, together with a description on how

STSOrgSync deals with these codes, and what possible actions that the user of the API could

do to mitigate the error

Status Code Description

40 This is probably the most common error returned by

Organisation, and it means that the input is inconsistent.

OS2sync, through input validation, attempts to ensure that this

error never occurs, but if it is returned, then the input is

incorrect according to the validation rules of Organisation.

Look at the request (i.e. enable Request/Response logging) and

see if something obvious is wrong with the request – usually

this is the case (empty fields, incorrect timestamps, etc)

41 Authorization error – the service agreement is setup

incorrectly.

45 Timestamp issue – unfortunately the Import() operation on

Organisation requires a timestamp (registration-time), and if

this timestamp is _after_ system-time on the Organisation

server, this error is thrown.

Ensure that the server running OS2sync has the correct time

set, and is synchronized with a time-server so time does not

drift.

47 Invalid validity period. This happens if two updates on the same

object occur in the “wrong order” – the logic inside OS2sync

always assumes that the current registration is the latest

registration.

The easy fix is to not supply a timestamp when using the API,

then OS2sync will use current time for each registration, and

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 13 / 19

this error will not happen. Otherwise make sure to call in

timestamp order if there are multiple updates on the same

object.

49 The object has been deleted or passivated, and cannot be

updated. As OS2sync does not delete or passivate objects, this

means that the object has been deleted or passivated through

some other means.

If the object needs to be updated, use the tool that deleted or

passivated the object to restore it first.

There are other errors that can occur, but they are technical errors on Organisation, and

besides waiting for them to be fixed (please report the error to KOMBIT), there is nothing

much that can be done on the OS2sync side.

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 14 / 19

3 Prerequisites and configuration
Installation and configuration is covered in detail in the installation guide, but depending on

the specific API being used, there are additional setup steps. These are outlined below

3.1 SQL and Service API

There are no additional setup steps required when using the SQL or Service API. All the

configuration is done on the server where the service is deployed.

Simply start calling the REST endpoints to use the Service API or perform SQL Inserts when

using the SQL API.

3.2 SDK API

The SDK API requires Visual Studio 2017 or later, and works with .NET Core 2.2 and later.

As the SDK API is used by importing the BusinessLayer (and IntegrationLayer) into a Visual

Studio project, there are several configuration steps that must be performed before

development can commence.

Note that the registry, certificate and service-agreement steps are also required when

deploying the end-product outside the development machine.

1. A FOCES certificate (including private keys) must be installed on the development

machine. This certificate is used when calling Organisation. The certificates used by

KOMBIT must also be loaded onto the machine, so trust can be established during

communication.

2. A set of service-agreements must be in place – these service-agreements must be

based on the certificate from the previous step (otherwise access is denied when calling

Organisation).

3. OS2sync has all its configuration stored in appsettings.json.

The three steps above are covered in some detail in the installation guide, as they are required

for any communication with Organisation.

Inside Visual Studio, open (or create) the project where OS2sync is to be used, and perform

the following steps

4. Right-click on “References” and pick “Add Reference…”. Add the following two DLL files

(part of the OS2sync distribution)

▪ BusinessLayer.dll

▪ IntegrationLayer.dll

5. Create (or copy from OS2sync) a log.config file for log4net

Before using the API, remember to call Initializer.Init(), and initialize the log4net API

(otherwise the log will be empty).

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 15 / 19

4 API Usage

4.1 Service API

The Service API requires that the Service has been deployed on some server, which can be

done either by installing the pre-compiled Windows Service, or by building a custom service

program.

The pre-compiled version accepts request on port 5000, and the correct API usage is shown

below.

4.1.1 Maintaining users

The /api/user endpoint accepts both POST, GET and DELETE requests. The POST request is

used both for creating and updating users. The GET operation returns a structure identical to

the one supplied when using POST.

Creating (or updating) a user object is done by POST’ing the a JSON payload against the /api/

user endpoint. The example below shows the full data structure

POST /api/user HTTP/1.1

content-type: application/json

{

 "Uuid": "8e8f07d9-8261-446c-83f3-6b2edb121162",

 "ShortKey": null,

 "UserId": "bsg",

 "PhoneNumber": null,

 "Email": "bsg@digital-identity.dk",

 "Location": "Kontor 15",

 "Positions": [

 {

 "OrgUnitUuid": "3094b893-157c-4f20-91ef-bd2e95ee26fe",

 "Name": "Udvikler"

 }

],

 "Person": {

 "Name": "Brian Storm Graversen",

 "Cpr": null

 }

}

It is only required to supply the fields that are mandatory according to the API specification, so

the following request is also valid, and does the same as the above request

{

 "Uuid": "8e8f07d9-8261-446c-83f3-6b2edb121162",

 "UserId": "bsg",

 "Email": "bsg@digital-identity.dk",

 "Location": "Kontor 15",

 "Positions": [

 {

 "OrgUnitUuid": "3094b893-157c-4f20-91ef-bd2e95ee26fe",

 "Name": "Udvikler"

 }

],

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 16 / 19

 "Person": {

 "Name": "Brian Storm Graversen"

 }

}

Deleting a user is done by performing a HTTP DELETE against the following endpoint (the UUID

is the UUID of the user to delete).

http://<server>:5000/api/user/8e8f07d9-8261-446c-83f3-6b2edb121162

Reading a user is done by performing a HTTP GET against the following endpoint (the UUID is

the UUID of the user to read).

http://<server>:5000/api/user/8e8f07d9-8261-446c-83f3-6b2edb121162

4.1.2 Maintaining organizational units

Maintenance of units is done in the same way as users, and the full JSON payload for creating

or updating a unit, looks like this (and is the same structure that GET returns)

POST /api/v1_1/orgunit HTTP/1.1

content-type: application/json

{

 "Uuid": "3094b893-157c-4f20-91ef-bd2e95ee26fe",

 "ShortKey": "DEV",

 "Name": "Development",

 "ParentOrgUnitUuid": "e2f45c88-0d20-4b0b-80cd-f923fd175757",

 "PayoutUnitUuid": null,

 "PhoneNumber": "30 34 05 76",

 "Email": "kontakt@digital-identity.dk",

 "Location": null,

 "LOSShortName": null,

 "ContactOpenHours": null,

 "PhoneOpenHours": null,

 "PostReturn": null,

 "EmailRemarks": null,

 "Contact": null,

 "Ean": null,

 "Post": null,

 "FOA": null,
 "PNR": null,
 "SOR": null,
 "Url": null,

 "Landline": null,

 "Type": "DEPARTMENT",

 "Tasks": [

 "13946fcc-2ac0-4c75-a35b-e3431efbed29",

 "98274f19-3827-4910-abbb-e294719bc290"

],

 "ItSystems": [

 "81cfee31-5cab-4891-aaab-7891baa8ee91"

],

 "ContactForTasks": [

 "839183dd-2bb1-4811-a35b-ba431efbed55",

]

}

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 17 / 19

Deleting a unit is done by performing a HTTP DELETE against the following endpoint (the UUID

is the UUID of the unit to delete).

http://<server>:5000/api/orgUnit/3094b893-157c-4f20-91ef-bd2e95ee26fe

Reading a unit is done by performing a HTTP GET against the following endpoint (the UUID is

the UUID of the unit to read).

http://<server>:5000/api/orgUnit/3094b893-157c-4f20-91ef-bd2e95ee26fe

4.2 SDK API

The SDK API has a single initialization method, that must be called before the API is ready for

use, and then it exposes three Service classes that can be used for maintaining Users,

OrgUnits and reading data objects from STS Organisation.

4.2.1 Initialization

All relevant code is placed in the Organisation.BusinessLayer namespace, which should be

added the using-section of the code as shown below. The method Init() on the Initializer class

is the first thing to call before using the API

using Organisation.BusinessLayer;

namespace DemoProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 Initializer.Init();

 }

 }

}

4.2.2 Maintaining users

The class UserService exposes three relevant methods (Update, Read and Delete), the usage

of which is shown below. The Update() method is used both for creating and updating users,

and is idempotent, so it can be called multiple times with the same input, without causing any

effect (besides some calls to the Organisation service).

using Organisation.BusinessLayer;

namespace DemoProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 Initializer.Init();

 // create a UserRegistration object for supplying user information

 UserRegistration user = new UserRegistration();

 user.Uuid = "5713fb19-d46a-411b-96ad-0abc3f67689b";

 user.UserId = "JJ";

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 18 / 19

 user.Person.Name = "Jens Jensen";

 user.Positions.Add(new Position({

 Name = "Sagsbehandler",

 OrgUnitUuid = "bd9d43b8-748d-4889-9057-9d47ff7aed55"

 });

 user.Email = "jj@kommune.dk";

 // calling the service is just supplying the registration object

 UserService userService = new UserService();

 userService.Update(user);

 // reading the just stored object is just supplying the UUID

 user = userService.Read("5713fb19-d46a-411b-96ad-0abc3f67689b");

 // delete the user by supplying the UUID of the User to be deleted

 userService.Delete("5713fb19-d46a-411b-96ad-0abc3f67689b",

 DateTime.Now);

 }

 }

}

4.2.3 Maintaining organizational units

Just like the UserService, the class OrgUnitService exposes three methods, the usage of which

is shown below. The same idempotent capabilities are true for the OrgUnitService.

using Organisation.BusinessLayer;

namespace DemoProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 Initializer.Init();

 // create a OrgUnitRegistration object for supplying information

 OrgUnitRegistration unit = new OrgUnitRegistration();

 unit.Uuid = "17a64b76-c805-43b1-8794-3ebc5c47bbe9";

 unit.Name = "Borgerservice";

 unit.ParentOrgUnitUuid = "96bf6a1c-c44e-4cb7-a627-0ec34a9f0fb6";

 unit.Ean = "12312312312";

 unit.Type = OrgUnitType.DEPARTMENT;

 // calling the service is just supplying the registration object

 OrgUnitService orgUnitService = new OrgUnitService();

 orgUnitService.Update(unit);

 // reading the just stored object is just supplying the UUID

 unit = orgUnitService.Read("17a64b76-c805-43b1-8794-3ebc5c47bbe9");

 // delete the unit by supplying the UUID of the unit to be deleted

 orgUnitService.Delete("17a64b76-c805-43b1-8794-3ebc5c47bbe9",

 DateTime.Now);

 }

 }

}

http://www.digital-identity.dk/

Digital Identity ApS www.digital-identity.dk 19 / 19

4.3 SQL API

The SQL based API’s are just ordinary SQL tables, the schemas for these tables are located in

the mssql and mysql folders (use the one matching your SQL database of choice. By

INSERT’ing into the queue_ prefixed tables, the OS2sync SchedulingLayer will be triggered,

and it will ensure that the data is synchronized with STS Organisation.

Make sure to do all inserts using a transaction, otherwise the scheduler might pick up a partial

object and synchronize it before all child tables have been inserted into.

5 Success / Error tables
When using either the Service API or the SQL API, the build-in queuing tables are used, and

likewise the build-in success/failure tables are populated as data is send through OS2sync.

Whenever a data-row is successfully copied to STS Organisation, the data is moved into the

matching success_ prefixed table, and likewise when an error occurs, the data is moved in the

failure_ prefixed tables.

In case of failures, it is possible to modify the data directly in the table, and copy it back into

the queue, to ensure the data is retried against STS Organisation.

http://www.digital-identity.dk/

